Structure and Property of Diamond-like Carbon Coating with Si and O Co-Doping Deposited by Reactive Magnetron Sputtering

نویسندگان

چکیده

In this paper, diamond-like carbon (DLC) coatings with Si and O co-doping (Si/O-DLC) were deposited by reactive magnetron sputtering using a gas mixture of C2H2, O2 Ar to sputter silicon/graphite splicing target. The content in the Si/O-DLC was controlled tuning flux mixture. composition, chemical bond structure, mechanical properties tribological behavior investigated X-ray photoelectron spectroscopy, Fourier infrared spectrometer, Raman nanoindentation, scratch tester ball-on-disk tribometer. electrical resistivity also studied four-point probe method. results show that doping tends form silicon–oxygen compound, causing decrease sp3 as well hardness coatings. performance can be improved due formation which effectively reduce friction coefficient. addition, insulating compound is doped into C-C network significantly improving surface DLC coating low content. good properties, insulation might used protection layers for microelectronics.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure, adhesive strength and electrochemical performance of nitrogen doped diamond-like carbon thin films deposited via DC magnetron sputtering.

Nitrogen doped diamond-like carbon (DLC:N) thin films were deposited on p-Si (100) substrates by DC magnetron sputtering with different nitrogen flow rates at a substrate temperature of about 100 degrees C. The chemical bonding structure of the films was characterized by X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy. The adhesive strength and surface morphology of the film...

متن کامل

The tribological properties of Cu-Ni3Al-MoS2 composite coating deposited by magnetron sputtering

In industrial applications, most materials are exposed to wear and friction because multiple conditions are used. However, the tribological properties of these materials can be improved with different techniques. One such technique that improves the frictional property of a surface is the use of self-lubricating coatings. In this study, multicomponent coatings of nominal composition Cu-Ni3Al-Mo...

متن کامل

AlNXOY THIN FILMS DEPOSITED BY DC REACTIVE MAGNETRON SPUTTERING

AlNxOy thin films were produced by DC reactive magnetron sputtering, using an atmosphere of argon and a reactive gas mixture of nitrogen and oxygen, for a wide range of partial pressures of reactive gas. During the deposition, the discharge current was kept constant and the discharge parameters were monitored. The deposition rate, chemical composition, morphology, structure and electrical resis...

متن کامل

Optimization Studies of Photocatalytic Tungsten-Doped Titania Coatings Deposited by Reactive Magnetron Co-Sputtering

In this article we investigate the structural and photocatalytic properties of W-doped titanium dioxide coatings. TiO2-W thin films were deposited onto glass slides by reactive magnetron co-sputtering. The properties of the films were analyzed using such techniques as XRD, Raman spectroscopy, EDX, TEM, and surface profilometry. The photocatalytic properties of the coatings were assessed using t...

متن کامل

Nitrogen and Aluminum Doped Diamond-like Carbon Thin Films by Dc Magnetron Sputtering Deposition

Diamond-like carbon (DLC) thin films used in this study were prepared with DC magnetron sputtering deposition. Silicon (100) wafers were used as the substrates onto which an RF bias was applied during the film deposition. For the nitrogen doped DLC films, a pure graphite target was used as the carbon source and nitrogen gas was introduced into the deposition chamber via a mass flow controller. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of composites science

سال: 2023

ISSN: ['2504-477X']

DOI: https://doi.org/10.3390/jcs7050180